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8   Tides 

[From a previous proposition] it appears that the waters of the sea ought twice to rise and 
twice to fall every day, as well lunar as solar. É  The two luminaries excite two motions, 
which will not appear distinctly, but between them will arise one mixed motion compounded 
out of both. In the conjunction or opposition of the luminaries their forces will be conjoined, 
and bring on the greatest flood and ebb. In the quadratures the sun will raise the waters 
which the moon depresses, and depress the waters which the moon raises, and from the 
difference of their forces the smallest of all tides will follow.              Isaac Newton, Principia 

 
Fig. 8.1 shows tidal predictions (height of the sea above an arbitrary chart datum) in 
Bermuda (32¡ N, 65¡ W) for August 2015. Tidal predictions are made by measuring tidal 
data over a long period, ideally a 19-year metonic cycle that is nearly a common multiple of 
the solar year and the lunar month, and fitting to these data a series of cosine functions with 
appropriate periods and with estimated phase lags and amplitudes. Observed values may 
differ from those predicted because of meteorological conditions (wind strength and direction 
and changes in atmospheric pressure). 

 
Figure 8.1. Tidal predictions in Bermuda for August 2015. 
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The most obvious feature in this figure is the familiar and regular succession of high 
and low water levels roughly twice a day. The average interval between successive times of 
high water in the figure is 12 hours, 25 minutes. The second feature is the diurnal inequality 
in which the heights of two tides on the same day differ. If 

 
hi  is the level of the ith high 

water then    h1 ! h2,  h3 ! h4,  h5 < h6,  h7 > h8,  h9 " h10  and so on, with comparable results for 

the levels at low water. The occurrence of spring and neap tides can also be seen. A spring 
tide has a higher high water level and a lower low water than usual while a neap tide has a 
lower high water and a higher low water level than usual. Spring and neap tides follow each 
other over a two-week cycle. The spring-neap cycle is partly obscured by the diurnal 
inequality. It can be seen more clearly in Fig. 8.2 in which successive pairs of high and low 
water levels have been averaged. For example, the two points at the top are 

  
(h1 + h2)/2 and (h3 + h4)/2 plotted against the corresponding average dates. There are spring 

tides around the 2nd, 15th and 30th with neap tides around the 9th and 22nd of August. 
 

 
Figure 8.2. Spring and neap tides in Bermuda for August 2015. See text for explanation. 

 
Newton proposed in the Principia the theory that tides are generated by the 

gravitational attraction of the sun and the moon. This theory is the basis for all subsequent 
work on tides. He also suggested the equilibrium theory of the tides, which predicts the 
hypothetical tide that would be produced by the tide-generating forces of the moon and sun if 
the dynamic response of the sea to these forces and the existence of landmasses can be 
ignored. It is of course simplistic but it explains many features of the tides. In quotations 
from the Principia in this chapter I have cherry picked passages that remain valid today. I 
follow Newton in using luminary as an umbrella term for the sun or the moon. 
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Tide-generating Force 

Fig. 8.3 shows a point P on the surface of the earth at a distance r from its center E. The 
center of the sun (or moon) is a long way to the right of the page at the point where the lines 
from E and P meet at a small angle that will be called !  ; this angle is negative when P is 
below the horizontal line. The distances from E and P to the luminary are d and d" 
respectively. The two-dimensional Cartesian coordinate system has the horizontal line as the 
x-axis and the line perpendicular to it as the y-axis intersecting at the origin at E. (Three non-
collinear points in three dimensions define a two-dimensional plane.) This figure represents a 
section through the center of the earth along the great circle containing P and the point 
directly beneath the luminary where the horizontal arrow cuts the surface of the earth (the 
subluminary point). 

 

 
Figure 8.3. Tide-generating force of the sun or moon. 

 
Suppose that the earth and the luminary are stationary in space and that there is an 

object of mass m at P. The force attracting this object towards the luminary is 

 
   
fP =

GMm

!d 2
{cos(" #), sin(" #)}   

where G is the gravitational constant and M is the mass of the luminary. If the object were at 
the center of the earth the force would be 

 
   
fE =

GMm

d2
{1, 0}.   

But the earth is not stationary since it orbits the sun due to its gravitational pull and likewise 
the moon orbits the earth. In consequence the earth is in free fall towards the sun and the 
moon. By analogy, suppose that you are in an elevator in a vacuum (with an oxygen supply 
attached to you) and that the elevator is released to fall downwards with an acceleration of 

9.81  m/s2. You will fall with the same acceleration and will become weightless, floating 
freely within the elevator (until it hits the bottom!). In a similar way a mass at the center of 
the earth will have no gravitational pull from the sun or the moon when they are in their 
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orbits and a mass at P on the surface of the earth will experience a gravitational pull from the 
luminary of 

  
fP ! fE. 

We shall now evaluate this pull from the fact that   r ! d  so that quantities less than 
r/d can be ignored. From the law of cosines (p. 26) 

   !d 2 = d2 + r 2 " 2rdcos#.  

Expanding   1/ !d 2 as a function of r in a Maclaurin series (p. 66) we find that 

 
   

1

!d 2
=

1

d2 + r 2 " 2rdcos#
!

1

d2
+

2r cos#

d3
.  

From the law of sines (p. 26) 

 

   

sin!
r

=
sin"

#d
!

sin"
d

sin! !
r sin"

d
.

  

Since !  is small,  cos(−ε ) = 1 to order !  so that 

 
   
{cos(−ε ),  sin(−ε )} ! {1, − r sinθ

d
}.   

Putting these results together and ignoring terms smaller than r/d 

 
   
fP ! fE = GMmr

d3
{2cos" , ! sin" }.   

 

 
Figure 8.4. The force exerted by the sun or moon on a point on the surface of the earth. 
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Fig. 8.4 represents a section through the center of the earth along any great circle 
containing the subluminary point. It shows how the direction vector {2cos #, −sin # } varies 
with #. The direction is vertically away from the center of the earth when # = 0¡ or 180¡ in 

which case the vector has its largest magnitude with an acceleration   2GMr/d3  which is 

 5.05×10−7  m/s2  for the sun and  1.10 ! 10" 6  m/s2  for the moon; the direction is vertically 
towards the center of the earth when # = 90¡ or 270¡ in which case the vector has half the 
above magnitude. For other angles the vector has a horizontal component parallel to the 
surface of the earth as well as a vertical component. The vertical component has a very small 

effect on terrestrial gravity (very small because  10−6  m/s2  is very small compared with 

 9.81 m/s2)  but it does not contribute to the generation of tides since it cannot make water 
move sideways. The tide-generating force is entirely due to the horizontal component 
tangential to the surface of the earth and we must finally consider how to isolate this 
component. 

The vector {2 cos #, −sin # } can be decomposed into a vertical component with 
direction {cos #, sin # } and a component {sin #, −cos # } that is perpendicular to it and 
therefore horizontal. (Show that the dot product of these two vectors is zero to prove that 
they are perpendicular.) Constants a and b are to be found to satisfy 

   a{cosθ ,  sinθ}+ b{sinθ , − cosθ}={2cosθ , − sinθ}  

which gives the pair of simultaneous linear equations 

 
  

(cosθ )a + (sinθ )b = 2cosθ
(sinθ )a − (cosθ )b = −sinθ .

  

These equations can be solved by the elementary method of elimination of variables or, more 
elegantly, by matrix algebra (see p. 93). The solution is 

 

  

a = 2cos2θ − sin2θ

b = 3cosθ sinθ = 3
2

sin2θ
  

from the double angle identity  sin2θ = 2cosθ sinθ  (p. 22). Thus the horizontal component of 
the force that generates the tides is 

 
   
ftide =

3GMmr sin2θ
2d3

{sinθ , −cosθ}.   

The acceleration due to this force is obtained by omitting m. 

Fig. 8.5 shows how the horizontal direction vector  sin2θ{sinθ , −cosθ}  varies with #. 
Its magnitude is zero when # is 0¡, 90¡, 180¡ or 270¡ and is maximal when # is 45¡, 135¡, 
225¡ or 315¡. At the latter angles the magnitude of the acceleration takes its maximum value 

of   3GMr /2d3  which is about  3.79×10−7  m/s2  for the sun and  8.25×10−7  m/s2  for the 
moon. The acceleration due to the moon is about 2.2 times larger than that due to the sun 
because it is inversely proportional to the cube of the distance. The fact that there is 
acceleration towards the point furthest from the sun (or moon) as well as to the nearest point, 
which explains the usual existence of two tides a day, is due to the term sin 2#. 
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Figure 8.5. The horizontal (tidal) force exerted by the sun or moon. 

Equilibrium Theory of the Tides 

 

 
Figure 8.6. The oceans at equilibrium. 

 
Suppose that the earth has a spherical core (shaded in Fig. 8.6) completely covered in water 
(unshaded). H1 is the subluminary point and the figure represents any great circle passing 
through it. If the earth did not rotate, water would rise at the points marked H1 and H2 (high 
water) and would fall at the points marked L1 and L2 (low water) under the tidal force in Fig. 
8.5 until an equilibrium was reached at which the tidal force was balanced by the earthÕs 
gravitational attraction. It can be shown that the surface of the water would form an ellipse, 
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whose eccentricity is greatly exaggerated in Fig. 8.6, with the major axis joining H1 to H2 
and the minor axis joining L1 to L2. Rotating this figure about the major axis H1-E-H2 
makes a representation in three dimensions, forming a prolate ellipsoid or spheroid, similar in 
shape to an American, Australian or rugby football with two pointed ends. 

In fact the earth rotates on its axis from west to east so that high water will travel 
round the world from east to west. The equilibrium theory of the tides assumes for simplicity 
that the earth is covered by water as before and that its rotation does not affect the 
equilibrium distribution of water shown diagrammatically in Fig. 8.6. These assumptions are 
inaccurate but they lead to some simple conclusions that explain qualitatively the behavior of 
the tides. 

Development of the theory 

Newton calculated the maximum tidal range R (the difference in height of the water between 
H1 and L1) under this theory by the following argument (though he did not use the concepts 
of work and potential energy). Suppose that a well is dug (not allowing water entry) from L1 
to the center of the earth at E and a similar well from H1 to E. The force exerted by the 
luminary at a point between L1 and E at a distance x from E on a body of mass m points 

towards E (see Fig. 8.4) and has magnitude   GMmx/d3  where M is the mass of the luminary 
and d its distance from the earth. The work done by the mass in response to the force of the 
luminary when it is allowed to drop from L1 to E is 

 
  

GMmx/d3
0

r
∫ dx = 1

2 GMmr2 /d3  

where r is the radius of the earth. (Work is defined as force × displacement in the direction of 
the force.) The force exerted by the luminary at a point between H1 and E at a distance x 
from E points away from E and is twice as large so that the work done by the mass in 

response to this force when it is raised from E to H1 is   GMmr2 /d3  and the total work done in 

the movement from L1 to H1 via E is 
  
3
2 GMmr2 /d3.  The work done by or to the body due to 

the gravitational force of the earth must be added. The body does work through this force in 
moving from L1 to E and has the same amount of work done to it in being raised from E the 
same distance towards H1 so that these two items cancel leaving the work done in raising the 
body from this point to H1, that is to say through the maximum tidal range R; this work is 
−gmR, with a negative sign because this work is done on the body. The total work is 

 
  

3GMmr2

2d3 − gmR.   

If the oceans are at equilibrium this work must be zero, since there would otherwise be a 
potential energy difference between L1 and H1, so that 

 
  
R = 3GMr2

2gd3 .  

Substitution for the constants predicts a maximum tidal range of 0.26 m due to the 
sun. An average value for d, the distance of the sun, has been used. A slightly larger or 
smaller value is predicted when the sun is nearest or furthest from the earth at perihelion or 
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aphelion. The predicted maximum range due to the moon is 0.54 m, using the average value 
of the distance from the distance of the moon; a slightly larger or smaller value is predicted at 
lunar perigee or apogee. When the sun and the moon are almost in line with one another, on 
the same side or the opposite side of the earth (i.e. in conjunction or opposition), their effects 
are additive so that the maximum range at spring tides is 0.80 m, using average values for the 
distances of the two luminaries. 

It is of interest to calculate the relative size of the fall of the sea level below its 
average value at L1 compared with its rise at H1. Suppose that in the absence of either 
luminary the earth is a sphere with radius r and that in the presence of one of them the water 
moves to create a prolate spheroid with levels r − l at L1 and r + h at H1. The volume of this 
spheroid is 

 
   
4
3π (r + h)(r − l)2 ! 4

3π r3 + r2(h− 2l)( )   

to first order in h and l compared with 
  
4
3πr3  for the original sphere. The two volumes must 

be equal since no water has been created or lost so that h = 2l; the rise in level at H1 is twice 
as large as the fall at L1. Observe that the maximum rise in level is only found at two points, 
H1 and H2, while the maximum fall occurs around the great circle midway between H1 and 
H2. 

Consider a point P on the surface of the earth in Fig. 8.6 such that the line from E to P 
makes an angle # with the line from E to H1 (cf. Fig. 8.3). The parametric representation of 
the ellipse is {x, y} = { a cos #, b sin #} (p. 33) where x and y are the Cartesian coordinates of 
a point on its surface and a and b are its semi-major and semi-minor axes. If we write a = 

  
r + 2

3 R, b = r − 1
3R  then the distance of P from E is 

 
  

(r + 2
3

R)2 cos2θ + (r − 1
3

R)2 sin2θ = r + R( 2
3

cos2θ − 1
3
sin2θ )   

to first order in R after a series expansion so that the height of water above mean sea level at 
P is 

 
  
h = R( 2

3 cos2θ − 1
3 sin2θ ) = R(cos2θ − 1

3).   

To follow the height of water at the point P as the earth rotates on its axis it is 
convenient to express # in terms of three measurable quantities, the latitude of P ($), its hour 
angle (%), and the declination of the luminary (D). The hour angle is the difference between 
the longitude of P and the longitude of the subluminary point. The declination is the latitude 
of the subluminary point. For example, the declination of the sun is 0¡ at one of the 
equinoxes since it is over the equator while it is 23.5¡ at the summer solstice in the northern 
hemisphere since it is over the Tropic of Cancer. In Fig. 8.7 N is the north pole and L the 
subluminary point. NPL is a spherical triangle whose sides are arcs of great circles. The 

length of NP, the distance of P from the north pole measured in radians, is 
 
π
2 −δ ;  the length 

of NL is 
  
π
2 − D;  the length of PL is # since it subtends that angle at the center of the earth; 

the angle ∠PNL is the hour angle %. By the law of cosines for spherical triangles (p. 42): 



 Tides 

  139 

 
  

cosθ = cos(π
2
−δ )cos(π

2
− D)+ sin(π

2
−δ )sin(π

2
− D)cosα

= sinδ sin D + cosδ cos Dcosα .
  

The height of water above mean sea level is 

 
  
h = R[(sinδ sin D + cosδ cos Dcosα )2 − 1

3
].  

This is the fundamental equation of the equilibrium theory of the tides. It can be calculated 
separately for the effects of the moon and the sun and then summed. Before considering its 
consequences a brief digression is necessary to consider the motion of the moon and the sun. 

 

 
Figure 8.7. Spherical triangle linking point P, the subluminary point L and the north pole N. 

 

Motion of the moon and sun 

The moon orbits the earth in an ellipse with a large eccentricity, !  = 0.055, with the earth at 
one focus. (Perturbations due to interaction with the sun will be ignored.) The sidereal period 
of the moon is on average 27.32 days. This is the time taken to pass from a fixed star on the 
celestial sphere back to the same star. Its synodic period is on average 29.53 days. This is its 
period with respect to the sun, the interval from one new moon to the next, and is also called 
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a lunar month. The two periods differ because the sun is apparently moving in the celestial 
sphere in relation to the earth. They are related to the length of the sidereal year (365.25 
days) by the equation 

 
 

1
sidereal period

− 1
synodic period

= 1
sidereal year

  

because the mean daily motion of the moon relative to the sun is equal to the difference 
between its daily motion relative to the fixed stars and the motion of the sun relative to the 
fixed stars and because the daily motion is inversely proportional to the period of a complete 
revolution. 

A lunar day is defined as the time between successive transits of the moon across the 
meridian of a fixed observer. (The meridian in astronomy is the projection onto the celestial 
sphere of the meridian of longitude (see p. 40) on which the observer stands; a celestial 
object reaches its highest point in the sky when crossing the meridian.) It is a little longer 
than 24 hours because the moon orbits the earth in the same direction as the earth rotates on 
its axis. If the moon is on the meridian now, then in 24 hours it will have moved by a fraction 
1/29.53 around its orbit so that 24 hours corresponds to a fraction 28.53/29.53 of a lunar day. 
Thus a lunar day is (29.53/28.53) × 24 = 24.84 hours or 24 hours 50 minutes on average, 
although there is some variability in this time throughout the year. If time is measured in 
solar days the hour angle with respect to the sun is % = 2& t starting from zero at t = 0 and it is 
% = 2&(28.53/29.53)t with respect to the moon. 

Tides are also affected by the declination of the sun and the moon. The declination of 
a celestial object is defined as the angle made by the line from the object to the center of the 
earth with the equatorial plane of the earth. A distant star is effectively fixed in space and has 
a constant declination; it appears to describe a small circle in the night sky unless it 
disappears below the horizon. Declination is the celestial equivalent of terrestrial latitude and 
is usually called $  but it will be called D  here to distinguish it from latitude. 

The elliptical orbit of the earth around the sun makes an angle of 23.5¡ with the 
equatorial plane so that the declination of the sun is 0¡ at the vernal equinox (March 20), 
increases to 23.5¡ at the summer solstice (June 21), declines to 0¡ at the autumnal equinox 
(September 22 or 23), declines further to −23.5¡ at the winter solstice (December 21 or 22) 
and then increases to 0¡ at the next vernal equinox.  

The movement of the moon is more complex than that of the sun and some 
simplification will be made here. The elliptical plane of its orbit about the earth makes an 
angle with the equatorial plane that varies from 18.5¡ to 28.5¡ and back to 18.5¡ over a cycle 
of 18.6 years; for example, this angle was 28.5¡ in 2006 and 18.5¡ in 2015 and it will be 
28.5¡ in 2025. When this angle is '  the declination of the moon will change from 0¡ to '  to 
0¡ to −'  and back to 0¡ over a lunar nodal period of 27.21 days, slightly less than a sidereal 
period of 27.32 days. 

Spring and neap tides; lagging and priming 

Returning to the tides, we first consider a simple mathematical model in which the effects of 
the declinations and the eccentricities of the orbits of the moon and sun are ignored. In other 
words, we assume that the orbits of the earth round the sun and of the earth round the moon 
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are circular so that the moon and the sun are always at the same distance from the earth and 
that these orbits are in the same plane as the equatorial plane so that the declination of the sun 
and of the moon is always zero. From the fundamental equation on p. 139 with D = 0 

 
  
h = R cos2δ cos2α − 1

3( ) = 1
2

R cos2δ (1+ cos2α )− 2
3( )   

using the double angle identity on p. 22. Taking a point on the equator with $ = 0 for 
simplicity and substituting the appropriate values for R and %, the contributions of the moon 
and the sun to the tidal height are 

 
  

M2 = 0.09+ 0.27cos(28.53/29.53)4π t
S2 = 0.04+ 0.13cos 4π t

  

where t is time in days, starting at t = 0 when the moon and the sun are in conjunction so that 
there is a new moon. (The subscript 2 refers to a tide occurring twice a day corresponding to 
the term cos 2%.   M2  and S2  are used in the tidal literature for the lunar and solar contribu-

tions under these specific assumptions.) The predicted tide   M2 + S2  due to the moon and the 

sun is shown in Fig. 8.8 for 30 days. There is a high tide about twice a day (there are 58 high 
tides with the first at t = 0 and the last at t = 29.50 giving an average time between high tides 
of 12.42 hours, half a lunar day), with spring and neap tides succeeding each other at 
intervals of 7.375 days, one quarter of a lunar month. The spring-neap cycle is analogous to 
the occurrence of beats in music when two sounds with similar frequencies are played 
together leading to oscillations in the amplitude of the resultant sound. 

 

 
Figure 8.8. Predicted tide   M2 + S2  at the equator ignoring declination and elliptic orbits. 
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For arbitrary latitude $ the predicted tide is 

 
  
M2 + S2 = 0.40(cos2δ − 2

3
)+ cos2δ (0.27cos12.141t + 0.13cos12.566t).   

This represents compressing the graph in Fig. 8.8 by the factor  cos2δ  and moving it down 

by 0.40 sin2δ . The tidal range would be halved at latitude 45¡ north or south and there would 
be no tide at the poles. 

Although the average time between high tides is half a lunar day over a lunar month 
there is variability in this time within the month. Write  ti  for the time of the ith high tide in 

Fig. 8.8, with   t1 = 0.  If the interval between high tides were constant the time of the ith high 

tide would be 0.5175 (i − 1) days. The lag of the tide is defined as 

  lagi = ti − 0.5175(i −1) days.  

(A negative lag or advance is often called priming.). This lag is shown below. 
 

 

 
Figure 8.9. Lag of the tide in minutes for data in Fig. 8.8. 

 
Fig. 8.9 may be summarized by saying that there is priming between new moon and 

the first quarter of the moon, lagging from then till full moon, priming from full moon to the 
third quarter and lagging from then till new moon. (At the first/third quarter the right/left half 
of the moon is illuminated.) The lag is zero at new and full moon because the average lag 
over each half of a lunar month is zero. 
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The lag of the tide is a cumulative lag. It is also of interest to consider the time 
interval between successive high tides,   ti+1 − ti ,  shown in Fig. 8.10, that has a minimum at 

new and full moon and a maximum at the first and last quarters. The dashed line is at the 
mean value 12.42 hours = 12 hours 50 minutes. The difference between the two figures 
reflects the fact that the time interval in Fig. 8.10 is, apart from a constant, the first difference 
between two lags in Fig. 8.9: 

   (ti+1 − ti ) = 0.5175+ lagi+1 − lagi.   

 

 
Figure 8.10. Time interval in hours between successive high tides. 

Effect of distance from the earth 

But the effects of the luminaries depend on their distances from the earth; for when they are 
less distant, their effects are greater, and when they are more distant, their effects are less, 
and that in the triplicate proportion of their apparent diameter.          Isaac Newton Principia 

 
The elliptical orbits of the earth round the sun and the moon round the earth affect the tides in 
two ways. Firstly, the distance between the earth and the luminary varies through the orbit 
causing a change in the height of the tide. Secondly, the speed of the earth round the sun or 
the moon round the earth varies through the orbit to satisfy KeplerÕs second law, causing a 
change in the timing of the tides. The first effect is more important. 

The maximum tidal range due to a luminary is inversely proportional to the cube of 
its distance from the earth. A small proportional increase p in this distance will cause a 

threefold decrease in the tidal force since   (1+ p)−3 = 1− 3p +O( p2 ). The sun is 1.67% closer 
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to the earth than average at perihelion in early January and about 1.67% further from the 
earth than average at aphelion in early July so that its tidal range is 5% larger than average in 
early January and 5% less in early July. Since the sun accounts for about one third of the total 
tidal range, spring tides will be about 1.67% higher than average in early January and about 
1.67% lower than average in early June. 

The moon is about 5.6% closer to the earth than average at perigee (when it is closest 
to the earth) and about 5.6% further from it at apogee (when it is furthest) so that its tidal 
range is about 16.5% larger than average at perigee and about 16.5% smaller at apogee; since 
it accounts for about two thirds of the total tidal range force spring tides will on average be 
about 11% higher than average at perigee and about 11% lower at apogee. The moon goes 
from perigee to perigee during an anomalistic month of 27.55 days, slightly longer than a 
sidereal month. One consequence is that two high tides a fortnight apart may differ 
considerably in height when one of them is near the moonÕs perigee and the other near 
apogee. A perigean spring tide is an exceptionally high tide that occurs three or four times a 
year when the moonÕs perigee coincides with a spring tide. 

Effect of declination 

The effect of either luminary doth likewise depend upon its declination or distance from the 
equator; for if the luminary was placed at the pole, it would constantly attract all the parts of 
the waters without any intermission or retraction of its action, and would cause no 
reciprocation of its motion.                                                                    Isaac Newton Principia 

 

 
 

Figure 8.11. Effect of declination D of the sun or moon on successive high tides. 
 

��

������	


� �����	�

�



 Tides 

  145 

The orbits of the earth round the sun and of the moon round the earth are not only elliptical 
but are inclined at an angle to the equatorial plane. This causes a cycle of declination whose 
effect is shown in Fig. 8.11 with the luminary overhead in the northern hemisphere with 
positive declination D. As the earth rotates around its axis perpendicular to the equator, the 
point P will move to Q half a day later so that it experiences a larger high tide at P, say in the 
morning, than at Q in the evening, causing a diurnal inequality. This effect will vanish for 
points on or near the equator and when the declination is zero with the luminary directly 
overhead at the equator. The sun is overhead at the equator at the vernal and autumnal 
equinoxes around 21 March and 23 September respectively so that the solar contribution to 
the diurnal inequality disappears at these times; it makes its maximum contribution to the 
diurnal inequality when its declination is 23.5¡ at the summer solstice around 21 June and 
when its declination is −23.5¡ at the winter solstice around 21 or 22 December. The moon 
moves through a declination cycle during a nodal month of 27.21 days, slightly less than a 
lunar month of 29.53 days. When it is at maximum declination (positive or negative) roughly 
over the Tropics of Cancer and Capricorn there is a strong lunar diurnal inequality known as 
a tropic tide. When it is at zero declination over the equator there is no lunar diurnal 
inequality; this is called an equatorial tide. 

The fundamental equation of the equilibrium tide on p. 139 can be written 

 
  
h = 1

2 R[3(sin2δ − 1
3)(sin2 D − 1

3)+ sin2δ sin2Dcosα + cos2δ cos2 Dcos2α ]   

after using the double angle identities (p. 22) and a little rearrangement. 

The last term inside the square brackets containing cos 2% generates the twice daily 
or semidiurnal tides as the hour angle goes round its cycle twice in a lunar or solar day. The 

coefficient of cos 2% is   cos2δ cos2 D  that is maximized on the equator ($ = 0) and becomes 
zero at the poles ($ = ± 90¡); it is also maximized when the declination of the luminary is 
zero and decreases as the declination increases in absolute value. 

The middle term containing cos % generates the once daily or diurnal tides as the hour 
angle goes round its cycle once a day. The coefficient of cos % is sin 2$ sin 2D that is zero on 
the equator and at the poles or when the declination of the luminary is zero. The coefficient is 
positive when the latitude and declination have the same sign (both northerly or both 
southerly); it increases to its maximum value as the latitude increases in absolute value to 
± 45¡ and as the declination increases in absolute value. When the latitude and declination 
have opposite signs (one northerly and the other southerly) the coefficient is negative, which 
displaces the predicted height h as a function of time by half a solar or lunar day depending 
on the luminary considered. (If time is measured in solar or lunar days so that % = 2& t, then 

 
  

−acos2π (t + 0.5)+ bcos4π (t + 0.5) = −acos(2πt +π )+ bcos(4πt + 2π )
= acos2πt + bcos4πt.)

  

The above equation for h was evaluated with $ = 32¡, the latitude of Bermuda. R was 
taken as 0.54 for the moon, disregarding the variation of distance from the earth, with D = 
0.41 cos(0.231t) (in radians) to represent a sinusoidal oscillation with amplitude 23.5¡ = 0.41 
radians (the average maximum value for the lunar declination) and period 27.21 days, and 
with hour angle % = 2&(28.53/29.53)t since time is measured in solar days. R was taken as 
0.26 for the sun with D = 15¡, its approximate value in August, and with % = 2& t. R was 
taken as constant for both luminaries for simplicity; this model assumes circular orbits. 
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Fig. 8.12 shows the result of adding the contributions for the moon and the sun, representing 
the tides predicted by the equilibrium theory for Bermuda in August. 

Comparison of the real tides in Bermuda in Fig. 8.1 with the theoretical predictions 
from equilibrium theory in Fig. 8.12 show qualitative agreement but quantitative disagree-
ment in two respects. The tidal range of the real tides in Bermuda is larger than that of the 
theoretical tides but the diurnal inequality of the real tides, though clearly present, is less 
pronounced than that of the theoretical tides. There is also a time lag between the real tide 
and the theoretical tide. The reasons for the discrepancies of real tides from equilibrium 
theory will be will be considered briefly in the next chapter (pp. 171−173). 

 

 
Figure 8.12. Predicted diurnal inequality in Bermuda in August. 
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