8 Tides

[From a previous proposition] it appears that thvaters of the sea ought twice to rise and
twice to fall every day, as well lunar as sol&. The two luminaries excite two motions,
which will not appear distinctly, but between them will arise one mixed motion compounded
out of both. In the conjunction @pposition of the luminaries their forces will be conjoined,

and bring on the greatest flood and ebb. In the quadratures the sun will raise the waters
which the moon depresses, and depress the waters which the moon raises, and from the
difference of theiforces the smallest of all tides will follow. Isaac NewtonPrincipia

Fig. 8.1 shows tidal predictions (height of the sea above an arbitrary chart datum) in
Bermuda(32j N, 65 W) for August 2015. Tidal predictions are made by measuring tida
data over a long period, ideally a-§8ar metonic cycle that is nearly a common multiple of

the solar year and the lunar month, and fitting to these data a series of cosine functions with
appropriate periods and with estimated phase lags and ampliDdssrved values may

differ from those predicted because of meteorological conditions (wind strength and direction
and changes in atmospheric pressure).

Figure 8.1 Tidal predictions in Bermuda for August 2015.
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The most obvious feature in this figurethe familiar and regular succession of high
and low water levels roughly twice a day. The average interval between successive times of
high waterin the figureis 12 hours, 25 minute$he second featuiis thediurnal inequality

in which the heights of tw tides on the same day differ.Hf is the level of thath high

water thenh ! h,, h,! h,, hy<h,h >h,h" h,andso on, with comparable results for

the levels at low wateiThe occurrence of spring and neap tides can also be seen. A spring
tide has a higher high water level and a lower low water than usual while a neap tide has a
lower high water and a higher low water level than usual. Spring and neap tides follow each
other over a tweweek cycle.The springneap cycle is partly obscured by the diurnal
inequality. It carbe seen more clearly in Fig. 8r2which successive pairs of high and low
water levels have been averaged.r Fexample, the twopoints at the top are

(h +h,)/2 and (h; + h,)/2 plotted against theorrespondingverage date There arespring
tides around the 2nd, 15th and 30th with neap tides aroundhtlae®d22rd of August.

Figure 8.2 Spring and neap tides in Bermuda for August 2015. See text famatgn.

Newton proposed in thérincipia the theory that tides are generated by the
gravitational attraction of the sun and the moon. This theory is the basis for all subsequent
work on tides.He also suggested the equilibrium theory of the fisdsch predicts the
hypothetical tide that would be produced by the-jdaerating forces of the moon and sun if
the dynamic response of the sea to theseet and the existence of |lamasses can be
ignored. It is of course simplistbut it explainsmany featues of the tidesln quotations
from thePrincipia in this chapter | have cherry pickedspages that remain valid today. |
follow Newton in using luminary as an umbrella term for the sun or the moon.
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Tide-generating brce

Fig. 8.3 shows a point P on therface of the earth at a distancérom its centelE. The

center of the sun (or moon) is a long way to the right of the page at the point where the lines
from E and P meet at a small angle that will be callethis angle is negative when P is
below the horizontal line. The distansefrom E and P to the luminargre d and d”
respectively. The twalimensional Cartesian coordinate system has the horizontal line as the
x-axis and the line perpendicular to it as yrexis intersecting at the origin at @hree non
collinear points in three dimensions define a-tfumensional plane-Jhis figure represents a
section through the center of the earth along the great circle containing P and the point
directly beneath the luminamyhere the horizontal arrow cutse surface of the earfthe
subluminary point)

Figure 8.3 Tide-generating force of the sm moon

Supposehat the earth and the luminaaye stationary in space and that there is an
object of massnat P.The force attraatg this object towardghe luminaryis

GMm

whereG is the gravitational constant anls the mass of the luminarif the object were at
the center of the earth the force would be

f GMm

But the earth is not stationary since ibits the sun due to its gravitational paiid likewise

the moon orbits the eartln consequence the earth is in free fall towards theasdnthe

moon By analogy, suppose that you are in an elevator in a vacuum (with an oxygen supply
attachedo you) ard that the elevator is released to fall downwards with an acceleration of

9.81 m/s®. You will fall with the same acceleration and will become weightless, floating
freely within the elevator (until it hits the bottomlh a similar waya mass at the center of
the earth will have no gravitational pull from the samthe moonwhenthey are in their
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orbitsand a mass at P on the surface of the earth will experiggreeigational pull from the
luminaryof f,! f..

We shall now evaluate this pull from the fact that d so that quantities less than
r/d can be ignored-rom the law of cosines (26)

di2=d?+r2" 2rdcost.
Expandingl/d!? as a function of in a Maclauin series (p. 66) we find that
1 _ 1 | i+ 2r cos#
di? d?+r2" 2rdcos#t d?>  d°
From the law of sines (p. 26)

sin/ _sn” - dn
r d#  d

ran”

sn! !

Since! is small,cos(—¢) =1 to order! so that

{cos(—¢), sin(—e)}! {1, — rs(ljne}.
Putting these results together and ignoring terms smaller/than

_ GMnr
==

fol o

{2cos", ! sn"}.
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Figure 8.4 The force exerted by the sun or moon on a point on the surféive earth
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Fig. 8.4represents a section through the center of the earth alongreat circle
contining the subluminary pointt shows how the direction vector {2c#s-sin#} varies
with # The direction is vertically away from the center of the earth wher0; or 18Q in
which casethe vector has its largest magnitude wéth acceleratioR GMr/d> which is
5.05%107" m/s? for the sun and.10! 10 ¢ m/s? for the moon; the direction is vertically
towards the center of the earth wh#r 90; or 27Q in which casehe vector has half the

above magnitude. For other angles the vector has a horizontal component parallel to the
surface of the earth as well as a vertical compofiém.vertical component has a very small

effect on terrestrial gravity (very small becau$e’® m/s? is very small compared with
y p

9.81 m/s®) but it does not contribute to the generation of tides since it cannot make water

move sideways. The tiegenerating force is entirely due to the horizontal component
tangenial to the surface of the earth and we must finally consider how to isolate this
component.

The vector {2cos # —sin #} can be decomposed into a vertical component with
direction {cos#, sin #} and a component {si®, —cos #} that is perpendicular tat iand
therefore horizontal. (Show that the dot product of these two vectors is zero to prove that
they are perpendiculatQonstanta andb are to be found to satisfy

a{cosO, sinB}+ b{sinfO, —cosh}={2cosh, —sin6}
which gives the pair of simultaneous linear equations
(cos@)a+(sin@)b = 2cosb
(sinB)a —(cosO)b = —sinH.
These equations can be solved by the elementary method of elimination of variables or, more
elegantly by matrix algebra (see p. PThe solution is

a=2cos>0—sin’0
b=3cosOsinf = %SinZO

from the double angle identiin26 = 2cosOsinO (p.22). Thus the horizontal component of
the force that generates the tides is

3GMmrsin20
fiee=""775
2d
The acceleration due to this forceolstained by omittingm.
Fig. 8.5 shows how the horizontal direction vect@r26{sin8, —cos6} varies with#
Its magnitude is zero whefiis 0j, 90, 18Q or 27Q and is maximal whewis 45, 135,
225 or 315. At the latter angles the magnitude of the acceleration takes its maximum value

of 3GMr/2d> which is about3.79x10~" m/s® for the sun and.25x10~" m/s* for the

moon. The acceleration due to the moon is about 2.2 times larger than that due to the sun
because it is inversely proportional to the cube of the distance. The fact that there is
acceleratia towards the point furthest from the sun (or moon) as well as to the nearest point,
which explains the usual existence of two tides a day, is due to the ters sin 2

{sin@, —cosB}.
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—

Figure 8.5 The horizontal (tidal) forcexerted by te sun or moon

Equilibrium Theory of the Tdes

Figure 8.6. The oceans at equilibrium.

Suppose that the earth has a spherical core (shaded in Fig. 8.6) completely covered in water
(unshaded). H1 is theubluminary pointand the figure represents any great circle passing
through t. If the earth did not rotate, water would rise at the points marked H1 and H2 (high
water) and would fall at the points marked L1 and L2 (low water) under the tidal force in Fig.
8.5 until an equilibrium was reached at which the tidal force was baldnycéte earthOs
gravitational attraction. It can be shown that the surface of the water would form an ellipse,
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whose eccentricity is greatly exaggerated in Fig. 8.6, with the major axis joining H1 to H2
and the minor axis joining L1 to LARotating this figire about the major axis FHA-H2

makes a representation in three dimensions, forming a prolate ellipsoid or spheroid, similar in
shape to an American, Australian or rugby baditwith two pointed ends.

In fact the earth rotates on its axis from west tst sa that high water will travel
round the world from east to west. The equilibrium theory of the tides assumes for simplicity
that the earth is covered by water as before and that its rotation does not affect the
equilibrium distribution of water shownatjrammatically in Fig. 8.6. These assumptions are
inaccurate but they lead to some simple conclusions that explain qualitatively the behavior of
the tides.

Development of the theory

Newton calculated the maximuilal rangeR (the difference in height of theater between
H1 and L) under this theory byhe following argumenfthough he did not use the concepts
of work and potential energypupposehata well is dug(not allowing water entryfrom L1

to the cergr of theearth at E and a similavell from H1 toE. The force exerted by the
luminary at a point betweeri1 and E at a distancefrom E on a body of masm points

towards E (see Fig. 8.4nd has magnitudéMmx/d> whereM is the mass of the Iumary
andd its distance from the eartfihe work done by the mass in response tddhee of the
luminarywhen it is allowed to drofpom L1 to E is

Jg GMmx/d3dx = %GMmrz/d3

wherer is the radius of the eartfiWork is defined as force displacemenin the direction of
the force.)The force exerted by the luminaag a point between H1 and E at a distaxce
from E points away from E and is twice as large so that the work done by the mass in

response to this foraghen it is raised from E to H1 i§Mmr?/d> and the total worklonein
the movement from L1 to H1 via E {GMmr?/d>. The work done by or to the body due to

the gravitational force of the earth must be added. The body does work through this force in
moving from L1 to E and has the same amount of work done to it in being raised from E the
same distance towards H1 so these two items cancel leaving the work done in raising the
body from this point to H1, that is to say through th@amum tidal rangeR; this work is

—gmR, with a negative sign because this work is done on the body. The total work is

3GMmr?
243

If the oceans ra at equibrium this work must be zercsince there wad otherwise be a
potential energy difference between L1 and stilthat

R 3GMr? .
2gd?
Substitution for the constants predictsnaximumtidal range of 0.26 m due to the

sun. An average value fal, the distance of the sun, has been used. A slightly larger or
smaller value is predicted when the sun is nearest or furthest from the earth at perihelion or

—gmR.
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aphelion. The predietl maximumrangedue to the moon is 0.5%, using the average value

of the distance from the distance of the moon; a slightly larger or smaller value is predicted at
lunar perigee or apoge®hen the sun and the moon atmostin line with one another, on

the same side dhe opposite side of the eafite. in conjunction or opposition)heir effects

are additive so that the maximumange at spring tidds 0.80 m using average values for the
distances of the two luminaries

It is of interest to calculate the relativizes of the fall of the sea level below its
average value at L1 compared with its rise at H1. Suppose that in the absence of either
luminary the earth is a sphere with radiwend that in the presence of one of them the water

moves to create a prolate sphid with levelsr — | at L1 andr + h at H1. The volume of this
spheroid is

G+ (=1 =4a(r +r2(h-2D))

to first order inh andl compared with%nr3 for the original sphere. The two volumes must

be equal since no water has been created or lost so 2 the rise in level at H1 is twice
as large as the fall at L1. Observe that the maximum rise in level is only found at two points,
H1 and H2, whi¢ the maximum fall occurs around the great circle midway between H1 and
H2.

Consider a point P on the surface of the earffig. 8.6 such that the linedm E to P
makes an anglé with the line from E to H1 (cf. Fig. 8.3].he parametric representatioh
the ellipse is %, y} ={acos# bsin# (p. 33)wherex andy are the Cartean coordinates of
a point on itssurface anda andb are its semmajor and semminor axes If we writea =

r+%R, b= r—%R then the distance of P from E is

J(r+2RYcos? 0+ (L R sin” 6 = r + R(2cos”  — Lsin” 0)
to first order inR after a series expansiao that the height of water above mean sea level at
Pis
h= R(%cos2 0— %sin2 0)= R(cos>6 — %).

To follow the height of water at the point P as the earth rotates on its axis it is
convenient texpress#in terms of three measurabljuantities, the latitude of (), its hour
angle(%, andthe declination of the luminar§D). The hour angle is the difference between
the longitude of P and the longitude of the subluminary point. The declingtiba latitude
of the subluminary point. For example, the declination of the surj iat ®ne of the
equinoxes since it is over the equator while it is at%he summer solstice in the northern

hemisphere since it is over the Tropic of Canteif-ig. 8.7 N is the north pole and L the
subluminary point. NPL is a spherical triangle whose sides are arcs of great circles. The

length of NP, the distance of P from the north pole measured in radiagwsﬁtsthe length

of NL is %—D; the length of PL ig#since it subtends that angle at the center of the earth;
the angleZPNL is the hour anglés By the law of cosines for spherical triangles (p. 42):
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cos@ = cos(% — 5)005(% -D)+ sin(% - 5)sin(% —D)cosa
=sindsin D+ cosd cos Dcosa.

The height of water above mean sealleve

h = R[(sind sin D + cos S cos Dcosar)? — %].

This is the fundamental equation of the equilibrium theory of the tides. It can be calculated
separately for the effects of the moon and the sun and then summed. Before considering its
consequences a brief digressionégsessary to consider the motion of the moon and the sun.

/Y

N4

Figure 8.7.Spherical triangle linking point P, the subluminary point L and the north pole N.

Motion of the moon and sun

The moon orbits the earth in an ellipse with a large eccentricity).055, with the earth at

one focus. (Perturbations due to interaction with the sun will be igndriee $idereal period

of the moon is on average 27.32 days. This is the time taken to pass from a fixed star on the
celestial sphere back to the same starsynodic period is on average 29.53 days. This is its
period with respect to the sun, the interval from one new moon to the next, and is also called
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a lunar month. The two periods differ because the sun is apparently moving in the celestial
sphere in riation to the earth. They are related to the length of the sidereal year (365.25
days) by the equation
1 ~ 1 _ 1
sidereal period synodic period sidereal year

because the mean daily motioh the moonrelative to the sun is equal the difference
betweenits daily motion relatived the fixed stars and the motion of the sun relative to the
fixed stars and because the daily motion is inversely proportional to the period of a complete
revolution.

A lunar day is defined as the time between successive transits of the moon across the
meiridian of a fixed observe(The meridian in astronomy is the projection onto the celestial
sphere of the meridian of longitude (see p. 40) on which the observer stands; a celestial
object reaches its highest point in the sky when crossing the meridiga little longer
than 24 hours because the moon orbits the earth in the same direction as the earth rotates on
its axis. If the moon is on the meridian now, then in 24 hours it will have moved by a fraction
1/29.53 around its orbit so that 24 hours esponds to a fraction 28.53/29.53 of a lunar day.
Thus a lunar day is (29.53/28.58)24 = 24.84 hours or 24 hours &finutes on average
although here is some variabilityn this timethroughout the yeaif time is measured in
solar days the hour angléth respect to the sun = 2&t starting from zero at= 0 and it is
%= 2&28.53/29.53)with respect to the moon.

Tides are also affected by the declination of the sun and the moon. The declination of
a celestial object is defined as the angle made by the line from the object to the center of the
earth with the equatorial plane of the earth. A distant star is efffcfived in space and has
a constant declination; it appears to describe a small circle in the night sky unless it
disappears below the horizddeclination is the celestial equivalent of terrestrial latitude and
is usually called but it will be calledD here to distinguish it from latitude.

The elliptical orbit of the earth around the sun makes an angle of 2&lb the
equatorial plane so that the declination of the sury iat@he vernal equinox (March 20),
increases to 23j5at the summer solstic(June 21), declines tq @t the autumnal equinox
(September 22 or 23), declines further28.5 at the winter solstice (December 21 or 22)
and then increases tg &t the next vernal equinox.

The movement of the moon is more complex than that ofstire and some
simplification will be made here. The elliptical plane of its orbit about the earth makes an
angle with the equatorial plane that varies from L838.5 and back to 18j5over a cycle
of 18.6 years; for example, this angle was 2&52006 and 18.5 in 2015 and it will be
28.5 in 2025. When this angle isthe declination of the moon will change from ® ’ to

0j to —" andback to § over a lunar nodal period of 27.21 days, slightly less than a sidereal
period of 27.32 days

Spring andneap tides; lagging and priming

Returning to the tides, we first consider a simple mathematical model in which the effects of
the declinations and the eccentricities of the orbits of the moon and sun are igymoteér
words, we assume that the orbifgtte earth round the sun and of the earth round the moon
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are circular so that the moon and the sun are always at the same distance from the earth and
that these orbits are in the same plane as the equatorial plane so that the declination of the sun
and ofthe moon is always zerromthe fundamental equation on p. 188h D =0

h= R(0052 S cos? a—%) = %R(cos2 6(1+cos20¢)—%)

using the double angle identity on p. ZZaking a point on the equator with= 0 for
simplicity and substituting the appropriate valuesR@nd % the contributions of the moon
and the sun to the tidal height are

M, =0.09+0.27cos(28.53/29.53)4rt
§,=0.04+0.13cos4rt

wheret is time in daysstarting at = 0 when the moon and the sun are in conjoncso that
there is a new moon. (The subscript 2 refers to a tide occuwiog a day corresponding to

the term co% M, and S, are used in the tidal literature for the lunar and solar contribu

tions under these specific assumptipiiie predicted tideM, + S, due to the moonral the

sunis shown in Fig. 8.8or 30 daysThere isa high tide about twice a day (there are 58 high
tides with the first at = 0 and the last dt= 29.50 giving an average time betweeghhiides

of 12.42 hours, half a lunar daylith spring and neap tides seecling each other at
intervals of 7.375 days, one quarter of a lunar morie. springneap cycle is analogous to

the occurrence of beats in music when two sounds with similar frequencies are played
together leading to oscillations in the amplitude ofrdsiltant sound.

Figure 8.8 Predicted tideM, + S, at the equatagnoring declination and elliptic orbits.
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For arbitrary latitudefthe predicted tide is
M, +S, =0.40(cos” 8 - 2) +cos” §(0.27 cos12.141¢+0.13cos12.566%).

This represents compressing the graph in Fig. 8.8 by the fastof and moving it down

by 0.4Gsin? 8. The tidal range would be halved at latitude #6rth or south and there would
be no tide at the poles.

Althoughthe average time between high tides is half a lunar day over a lunar month
there is variability in this time within the month. Writefor the time of theth high tide in

Fig. 8.8 with 7, = 0. If the intervalbetween high tides were constant the time ofitthéigh
tide would be 0.5175 ¢ 1) days. The lag of the tide is defined as
lag, =¢,—0.5175(i—1) days.

(A negative lag or advance is often called priminghis lag is shown below

Minutes

60 1L PP ...
40+ . *

20} o ° o

—40} . .

_60* .... ...

1 1 1 Days
0 5 10 15 20 25 30

Figure 8.9 Lag of the tidgn minutes for data in Fig. 8.8

Fig. 8.9may be summarized by saying that there is priming between new moon and
the first quarter of the moon, lagging from then till full moon, priming from full moon to the
third quarter and lagging frothen till new moon. (At the first/third quarter the right/left half
of the moon is illuminated.) The lag zero at new and full modmecause the average lag
over each half of a lunar monithzero.
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The lag of the tide is a cumulative lag.is also of irterest to consider the time
interval between successive high tides,—¢;, shown in Fig. 8.10that has a minimum at

new and full moon and a maximum at the first and last quafbes.dashed line is at the
mean value 12.42 hours = 1»urs 50 minutesThe difference between the two figures
reflects the fact thahe time interval in Fig. 8.18, apart from a constant, the first diffecen
between two lags in Fig. 8.9

(t,,—t)=05175+1ag,, , —lag,.
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Figure 8.1Q Timeintervalin hoursbetween sccessive high tides
Effect of dstance from the earth

But the effects of the luminaries depend on their distances from the earth; for when they are
less distant, their effects are greater, and when they are more distant, their effects are less,
and that in the triplicate proportion of their apparent diameter. Isaac NewtorPrincipia

The elliptical orbits of the earth round the sun and the moon round the earth affect the tides in
two ways. Firstly, the distance betwettie earth and thaiininaryvaries through the orbit
causing a change in the height of the tide. Secondly, the speed of the earth round the sun or
the moon round the earth varies through the orbit to satisfy KeplerOs second law, causing a
change in the timing of the tides. g first effect is more important.

The maximum tidal range due to a luminasyinversely poportional to the cube of
its distance from the earth. A small proportional increpsa this distance will cause a

threefold decrease in the tidal force sirite p)= =1-3p+0(p?). The sun is 1.67% closer
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to the earth than average at petion in early January and about 1.67% further from the
earth than average at aphelion in early 3dl that its tidal rangs 5% larger than average in
early January an8% less in early JulySince the sun accounts for about one third ofdted

tidal range spring tides will be about 1.67% higher than average in early January and about
1.67% lower than average in early June.

The moon is about 5.6% closer to the earth thasrage at perigggvhen it is closest
to the earth) andbout 5.6% further from it at apogéehen it is furthestso that itstidal
rangeis about 16.5% larger than average at perigdeahout 16.5% smaller at apogee; since
it accounts for about two itllls of thetotal tidal rangdorce spring tides will o average be
about 11% higher than average at perigee and about 11% lower at afjog@eoon goes
from perigee to perigee during an anomalistic month of 27.55 days, slightly longer than a
sidereal moth. One consequee is that two high tides a fortnight aparay differ
considerablyin height when one of them is near the moonOs perigee and the other near
apogeeA perigean spring tide is an exceptionally high tide that occurs three or four times a
yea when the moonOs perigee coincides with a spring tide.

Effect of declination

The effect of either luminary doth likewise depend upon its declination or distance from the
equator; for if the luminary was placed at the pole, it would constantly attrattiearts of

the waters without any intermission or retraction of its action, and would cause no
reciprocation of its motion. Isaac NewtorPrincipia

To Luminary

(®)
o

Equator

Figure 8.11.Effect of declinatiorD of the sun or moon on successive high tides.
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The orbits of the earth round the sun and of the moon round the earth are not only elliptical
but are inclined at an angle to the equatorial plane. This causes a cycle of deakhasen
effect is shown in i§. 8.11 with the luminaryverhead in the northern hemisphere with
positive declinatiorD. As the earth rotates around its axis perpendicular to the equator, the
point P will move to Q half a day later so that it experiences a larger high tide at Rtlsay i
morning, than at Q in the evening, causing a diurnal inequdiitys effect will vanish for

points on or near the equator and when the declinatiorre with the luminarydirectly
overhead at the equator. The sun is overhead at the equator \arnbé and autumnal
equinoxes around 21 March and 23 September respectively so that the solar contribution to
the diurnal inequality disappears at these times; it makes its maximum contribution to the
diurnal inequality when its declination is 23.8t thesummer solstice around 21 June and
when its declination is23.5 at the winter solstice around 21 or 22 Decembbe moon
moves through a declination cycle during a nodal month of 27.21 days, slightly less than a
lunar month of 29.53 days. When it isna&aximum declination (positive or negative) roughly
over the Tropics of Cancer and Capricorn there is a stumagdiurnal inequality known as

a tropic tide. When it is at zero declination over the equator there isnao diurnal
inequality; this is cled an equatorial tide.

The fundamental equatiorh the equilibrium tide on p. 138an be written
h= %R[3(sin2 5— %)(sin2 D- %) +5sin28 sin2 D cosa + cos? 8 cos? Dcos2a]

after using the double angle identitiesZp) and a little rearrangement.

The lastterminside the square bracketentainingcos 2Zsgenerates the twice daily
or semidiurnal tides as the hour angle goes round ite ¢yate in a lunar or solar dayhe

coefficient of co2%is cos’§ cos’ D thatis maximized on the equatof€ 0) and becomes

zero at the poles$(= +90;); it is also maximized when the declination of the luminary is
zero and decreases as the declination increases in absolute value.

The middleterm containing cogégenerates the once daily or diurnal tides as the hour
anglegoes round its cycle onceday. The coefficient of co%dis sin 28sin 2D thatis zero on
the equator and at the poles or when the declination of the luminary ig kercoefficient is
positive when the latitude and declination have the same sign (both northerly or both
southerly; it increases to its maximum value as the latitude increases in absolute value to
+45; and as the declination increases in absolute value. When the latitude and declination
have opposite signs (one northerly and the other southerly) the coefficient is negative, which
displaces the predicted heightis a function of timéy half a solar otunar day depending
on the luminary considered. (If time is measured in solar or lunar days d6-tl24it, then

—acos2m(t+0.5)+ bcos4n(t+0.5)=—acos(2nt+ )+ becos(4rt + 21)
=acos2nt+ bcos4nt.)

The above equation fdrwas evaluated witly = 32j, the latitude of Bermuddr was
taken as 0.54af the moon, disregarding the variation of distance from the earth,Dnith
0.41cos(0.231) (in radians) to represeatsinusoidal oscillation with amplitude 285 0.41
radians (the average maximum value for the lunar declination) and period 27.21 days, and
with hour angle%= 2&28.53/29.53) since time is measured in solar dalgswvas taken as
0.26 for the sun withh = 15;, its approximate value in August, andtiw%= 2&t. R was
taken as constant fdsoth luminaries for simplicity; thisnodel assumes circular orbits.
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Chapter 8

Fig. 8.12shows the result of adding the contributions for the moon and theeguasenting
the tides predicted by the equilibrium theory forfada in August.

Comparison of the real tides in Bermuda in Fig. 8.1 with the theoretical predictions
from equilibrium theory in Fig. 8.12 show qualitative agreement but quantitative disagree
ment in two respects. The tidal range of the real tides in Bnwlarger than that of the
theoretical tides but the diurnal inequality of the real tides, though clearly present, is less
pronounced than that of the theoreticabsidThere is also a time lag between the real tide
and the theoretical tidélhe reasons fothe discrepancies of real tides from equilibrium
theorywill be will be considered briefly in the next chapep. 17+173).

Meters
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Figure 8.12 Predicted diurnal inequality in Bermuda in August

14€



