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11   Statistical Inference 

The previous chapter considered the construction of statistical models in science based on the 
frequentist concept of probability. The inverse problem is that of statistical inference: given 
the outcome of an experiment, what inference can be drawn about the validity of an 
underlying statistical model? It would seem natural in this context to use the inductive 
interpretation of probability but the founders of statistical inference in the first half of the 
twentieth century (Karl Pearson and his son E.S.Pearson, R.A.Fisher and J.Neyman) declined 
to do so because they thought it too difficult to develop a coherent mathematical theory of 
inductive probability. They therefore developed the theory of significance tests and 
confidence intervals based on frequentist ideas. More recently some statisticians have tried to 
construct methods of statistical inference based on inductive probability and the use of 
Bayes’ theorem so that two schools of thought have developed, the frequentist school and the 
Bayesian school. In this chapter I shall give a brief, and possibly prejudiced, account of 
Bayesian ideas before discussing classical, frequentist methods of statistical inference. 

Bayesian Inference 

There are three types of triplet, monozygotic (MZ) triplets derived from a single zygote 
(fertilized ovum) that divides twice, dizygotic (DZ) triplets derived from two zygotes, one of 
which then divides, and trizygotic (TZ) triplets derived from the fertilization of three ova. All 
the MZ triplets, half the DZ triplets and one quarter of the TZ triplets are on average of the 
same sex. It has been estimated that the relative frequencies of these three types of triplets 
born to white women aged 30 (excluding in vitro fertilization) are about 2/11, 6/11 and 3/11 
(see my book The Biology of Twinning in Man, 1970, Chapter 5). If such a woman has like-
sexed triplets, what is the probability that they are MZ, ignoring any other information about 
them? Out of 1000 triplets born to women of this kind 182 will be like-sexed MZ, 273 like-
sexed DZ and 68 like-sexed TZ. Out of these 523 like-sexed triplets the proportion of MZ 
triplets is 182/523 = 0.35, which is the required answer. Knowledge that the triplets are like-
sexed has increased the probability that they are MZ from 2/11 to about 1/3. 

This is an example of Bayes’ theorem. More formally, suppose that we can choose 
between k hypotheses,    H1, H2,!, Hk (in the example MZ, DZ and TZ) on the basis of some 
data whose probability of occurrence depends on the hypothesis (in the example the data are 
that all three triplets have the same sex). From the law of multiplication of probabilities 

   P(Hi  and data) = P(Hi )× P(data | Hi ) = P(data)× P(Hi | data)  

so that 
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P(Hi | data) =

P(Hi )× P(data | Hi )
P(data)

.  

Furthermore 

 
  
P(data) = P(Hi

i=1

k

∑ )× P(data | Hi )  

so that 

 

  

P(Hi | data) =
P(Hi )× P(data | Hi )

P(Hi
i=1

k

∑ )× P(data | Hi )
.   

This is the formal statement of Bayes’ theorem. The term   P(Hi )  is called the prior 

probability of  Hi  before the data are known, the term   P(Hi | data)  is the posterior 

probability of  Hi  after the data are known and   P(data | Hi )  is called the likelihood of the 

data given   Hi.  The theorem can therefore be stated as 

  Posterior probability ∝  Prior probability ×  Likelihood   
with the constant of proportionality chosen to make the posterior probabilities sum to unity. 
All the probabilities in this proof of Bayes’ theorem and in the example in the previous 
paragraph are to be interpreted in the frequentist sense as relative frequencies in the long run. 

The problem arises when the prior probabilities cannot be interpreted in a frequentist 
way. What do you do if you have not read my book on twinning and do not know the relative 
frequencies of the three types of triplet? If you were a Bayesian statistician you would take 
the prior “probabilities” of the three types of triplet as being the same and therefore equal to 
1/3 to reflect your ignorance and would calculate the posterior “probability” that they are 
monozygotic given that they are like-sexed as 0.57 from Bayes’ theorem. The likelihood 
remains a frequentist probability but the prior and posterior probabilities are now inductive 
probabilities measuring rational degree of belief. Bayes’ theorem is still regarded as valid 
despite the difference in the concepts of probability involved. 

Thomas Bayes’ Essay towards solving a problem in the doctrine of chances was 
published posthumously in 1764. After deriving the theorem he applied it to a situation in 
which there was a binomial probability   [n!/ r!(n− r)!]θ r (1−θ )n−r  of obtaining r successes in 
n trials where θ  is the chance of success in each trial. He supposed that nothing was known 
about θ  before any trials were done that could be expressed by saying that θ  was equally 
likely to lie anywhere between 0 and 1; in other words the prior distribution of θ  is a 
continuous uniform distribution with density function   f (θ ) = 1 when 0 ≤θ ≤1.  Given the 
data that r successes have been observed in n trials the posterior probability that θ  lies 
between a and b is 

 

  

P(a ≤θ ≤ b | data) =
θ r (1−θ )n−r dθ

a

b
∫
θ r (1−θ )n−r dθ

0

1
∫

.  
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(Sums are replaced by integrals because the distribution is continuous. The factorials 
occurring in both numerator and denominator cancel out.) The integrals are closely related to 
the Beta function that is tabulated on the Internet and elsewhere. For example, if 29 successes 
have been observed in 40 trials 

 

  

P(0.57 ≤θ ≤ 0.84 | data) = 0.95
P(θ < 0.57 | data) = 0.025
P(θ > 0.84 | data) = 0.025.

 

These probabilities could be interpreted in the frequentist sense if someone had chosen a 
value of θ  randomly from a uniform distribution with any value equally likely to be chosen 
and had then made 40 trials with this value. Usually they must be interpreted as rational 
degrees of belief with the understanding that a uniform prior distribution reflects the absence 
of information about θ  before the trials were done. 

Many statisticians have felt unease about the use of Bayes’ theorem when the prior 
probabilities cannot be given a frequentist interpretation and prefer to use the classical 
methods of statistical inference based on the frequentist concept of probability. 

Classical Statistical Inference 

Classical inference is based on the use of significance tests and confidence intervals. In a 
significance test a null hypothesis is set up that predicts the probabilities of all the possible 
outcomes of an experiment. The results are ranked in descending order of their likelihood 
under the null hypothesis and classified into two classes, the acceptance and the rejection 
classes, such that all the results in the rejection class are less likely and so less favorable to 
the null hypothesis than any of the results in the acceptance class and also such that the total 
probability of a result falling into the rejection class is equal to some small pre-assigned 
value α called the significance level. After the experiment has been done the null hypothesis 
is accepted or rejected according as the result falls into the acceptance or the rejection class. 
The significance level is often taken as 0.05 or 0.01. 

For example, suppose that a coin has been thrown n times resulting in r heads and 
n − r tails. The number of heads r is a binomial variate with probability θ of occurrence at 
each throw so that the proportion of successes,   p = r /n,  is approximately normally 
distributed with E(p) = θ and Var(p) = θ(1−θ)/n. We might want to test the null hypothesis 
that the coin is unbiased, that is to say that θ = 0.5. In this case 

 
  
z = ( p − 0.5)

0.25 / n
  

is approximately a standard normal variate with zero mean and unit variance. Values of z that 
are small in absolute value are favorable to the null hypothesis. A significance test at the 5% 
level (α = 0.05) would reject the null hypothesis that the coin is unbiased whenever |z| ≥ 1.96 
since   P(z ≥1.96) = P(z ≤ −1.96) = 0.025  on the assumption of normality; a significance test 
at the 1% level would reject the null hypothesis whenever |z| ≥ 2.33. (See Table 10.7 on 
p. 189.) Suppose that n = 40. Values of z for r = 23, 13 and 29 are 0.95, −2.21 and 2.85. The 
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hypothesis of no bias would be accepted in the first case, it would be rejected at the 5% level 
but accepted at the 1% level in the second case and would be rejected at both the 5% and the 
1% levels in the last case. (The expressions r, p and z are used to mean either random 
variables or particular values that the variable takes according to context.) 

Two types of error can be made in a significance test: rejecting the null hypothesis 
when it is true and accepting it when it is false. The test is designed to have a small known 
probability of the first type of error so that there is reasonable confidence that the hypothesis 
is false when it is rejected; but no statement is being made about its probability of being true 
or false. Accepting the null hypothesis merely means that there is insufficient evidence to 
reject it. Thus a significance test by itself can be rather uninformative. 

A confidence interval on a parameter can, when it is applicable, provide more infor-
mation. A 95% (99%) confidence interval is a statement that the parameter lies within a 
specified interval, depending on the result of an experiment, that has a 95% (99%) 
probability of being true. If a possibly biased coin with probability θ of heads is thrown n 
times the proportion p of heads is approximately normally distributed with Var(p) = θ(1−θ)/n 
that can be estimated as p(1 − p)/n so that 

 
  
z = ( p −θ )

p(1− p)/n
 

is approximately a standard normal variate. The statement that |z| ≤ 1.96 is equivalent to the 
statement that θ lies within the interval   p ±1.96 p(1− p)/n  which is therefore a 95% 
confidence interval for θ ; a 99% confidence interval is obtained if 1.96 is replaced by 2.33. 
For example, if the coin is heads 23 times in 40 throws the 95% confidence interval for θ is 
0.42 to 0.73 and the 99% confidence interval is 0.39 to 0.76. [The approximation of θ(1 − θ) 
by p(1 − p) can be avoided at the expense of a more complex calculation by defining 

 
  
z = ( p −θ )

θ(1−θ )/n
 

and asserting that |z| ≤ 1.96 (2.33). This leads to a quadratic equation for the endpoints of the 
interval. This is equivalent to performing significance tests on all possible values of θ and 
including in the interval all values that are accepted by the relevant test.] 

Point estimation 

In the above example the procedure was to define an estimator p, the proportion of successes, 
of the unknown parameter θ, the probability of success, then to find the sampling distribution 
of the estimator p, and finally to construct a significance test or a confidence interval based 
on these results. (The term estimator is used when p is regarded as a random variable with a 
sampling distribution; an estimate is the value of the estimator in a particular realization.) 
Many statistical procedures follow this pattern and it is important to be able to base them on 
a method of estimation that is as good as possible. 

A general method leading to optimal estimators is the method of maximum likelihood 
that chooses the parameter value or values that maximize the likelihood of occurrence of the 
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observed data. If r successes have occurred in n trials with a probability θ of success at each 
trial, the likelihood of this result is 

 
  
L = n!

r!(n− r)!
θ r (1−θ )n−r  

so that 

 

  

log L = constant + r logθ + (n− r) log(1−θ )
d log L

dθ
= r
θ
− (n− r)

(1−θ )
.

  

Setting   d log L/dθ = 0  to find the value of θ that maximizes L and writing  θ̂ , the usual 
notation for a maximum likelihood estimator, for the solution we find that   θ̂ = r /n = p.  The 
Expected value of this estimator is E(p) = θ, so that it is an unbiased estimator whose 
Expected value is equal to the parameter being estimated, and its variance is Var(p) = 
  θ(1−θ )/n ; it will be approximately normally distributed when n is large by the central limit 
theorem, leading to the construction of the significance tests and confidence intervals 
discussed above. 

Suppose that n observations    x1,x2,!,xn  have been made on a Poisson variate with 
mean µ (cf. Table 10.5 on p. 184). Their likelihood of occurrence is 

 
   
L = e−nµµsum

x1!x2!!xn !
  

where 
  
sum = xii∑ ,  the sum of the observations, so that 

 

  

log L = constant − nµ + sum× logµ
d log L

dµ
= −n+ sum

µ
.

  

Setting   d log L/dµ = 0  and writing   sum/n = x ,  the sample mean, we find that   µ̂ = x .  The 
Expected value of this estimator is   E(x ) = µ,  so that it is unbiased, and its variance is 

  Var(x ) = µ /n ; it will be approximately normally distributed when n is large. Significance 
tests and confidence intervals can be constructed as before. 

Thirdly, suppose that n observations    x1,x2,!,xn  have been made on a normal variate 

with mean µ and variance  σ
2  (cf. Fig 10.2 on p. 188). The logarithm of the likelihood is 

 
  
log L = − 1

2 n log2πσ 2 −
1
2 (xi − µ)2

i∑
σ 2

.   

The two parameters µ and  σ
2  must be estimated simultaneously by solving the equations 
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∂log L
∂µ

=
(xi − µ)

i∑
σ 2

= 0

∂log L
∂σ 2

= − n
2σ 2

+
(xi − µ)

i∑ 2

2σ 4
= 0.

 

The solution of the first equation is   µ̂ = x .  Its Expected value is   E(x ) = µ,  so that it is 

unbiased, its variance is   Var(x ) =σ 2 /n,  and it is exactly normally distributed. Substituting 

this value into the second equation we find that   σ̂
2 = S2 /nwhere 

  
S2 = (xii=1

n∑ − x )2,  the 
sum of the squared deviations from the sample mean. To find the Expected value of this 
estimator observe that 

 
  
S2 = (xi − x )2

i∑ = (xi − µ + µ − x )2
i∑ = (xi − µ)2

i∑ − n(x − µ)2   

so that   E(S2) = (n−1)σ 2.  Thus  σ̂
2  is a slightly biased estimator of  !

2  and it is usual to use 
the unbiased estimator   s

2 = S2/(n! 1)  instead. 
The importance of maximizing the likelihood is that it provides a sufficient estimator 

when such an estimator exists, which is usually the case. An estimator, t, of a parameter θ is 
said to be sufficient if the conditional distribution of the observations given t is independent 
of θ. When this is the case no more information can be squeezed out of the observations once 
t is known and t therefore contains all the information about θ that the observations can 
provide. This is an extremely powerful property. 

As an example suppose that n observations    x1,x2,!,xn  have been made on a Poisson 
variate with mean µ. Their joint probability of occurrence is the likelihood 

 
   
L(x1,x2,! ,xn) =

e! nµµsum

x1!x2!! xn!
  

where sum is the sum of the observations. sum is a Poisson variate with mean nµ so that its 
probability of occurrence is the likelihood 

 
  
L(sum) =

e! nµ (nµ)sum

sum!
.  

The conditional probability of the observations given their sum is the ratio 

 
   

L(x1,x2,! ,xn)

L(sum)
=

sum!

x1!x2!! xn!nsum
 

which does not depend on µ. Thus the sum of the observations is sufficient for µ and once it 
has been calculated the individual observations can be discarded as far as making inferences 
about µ is concerned. 

If t is a sufficient statistic for a parameter θ then so is any monotonic function of t. 
The principle of sufficiency produces a class of sufficient statistics and the choice of a 
suitable point estimator is to some extent arbitrary. In the above example it is natural to 
choose the sample mean   x = sum/n  as an estimator for µ. For a sample of size n from a 
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normal distribution, sum and   S
2, the sum of the observations and the sum of the squared 

deviations from the sample mean, are jointly sufficient statistics for µ and  !
2  in the sense 

that the conditional likelihood of the observations given these two statistics is independent of 
the two parameters. It is natural to choose the sample mean   x = sum/n  as an estimator of  µ. 

Either the maximum likelihood estimator   ö!
2 = S2/n  or the unbiased estimator 

  s
2 = S2/(n! 1)  may be used to estimate  !

2;  it will be seen in the next subsection that it 
makes no difference to the resulting significance test or confidence interval which of them is 
used. 

To see why the method of maximum likelihood leads to sufficient estimators suppose 
that n observations have been made on a continuous random variable whose density function 
depends on a single parameter θ. (The argument can easily be extended to discrete 
distributions and multiple parameters.) The likelihood of the observations is 

 
   
L = f (x1,! ) " f (x2,! ) " ! " f (xn,! ).  

If t is a sufficient statistic for θ with density function g(t, θ) the likelihood can be written 
 

   
L = g(t,! ) " h(x1,x2,! ,xn)  

for some function h. The solution of the equation   dL/d! = 0 is the same as that of the 
equation   dg(t,! )/d! = 0  so that  ö!  is a function of t and is therefore sufficient.  

Student’s t test 

Suppose that n observations    x1,x2,!,xn  have been made on a random variable that can be 

assumed to be normally distributed with unknown mean µ and variance  !
2  in order to make 

inferences about µ. The quantity   n(x ! µ)/"  is a standard normal variate and an 
approximate significance test or confidence interval for µ can be constructed by substituting 
the sample standard deviation s for σ and assuming that   s= ! .  This procedure is adequate in 
large samples but breaks down in small samples because it ignores the sampling distribution 
of s. The problem of finding the sampling distribution of   n(x ! µ)/s  was tackled by 
W.S.Gosset in 1908; he published his conclusions under the pseudonym ‘Student’ because he 
was employed by the brewers Guinness who did not allow their employees to publish under 
their own names. 

Write 
  
zi = (xi ! µ)/"  and z for the vector of the 

  
zi's.  Consider the linear trans-

formation   y = A i z  where A is an orthogonal matrix of order n × n. An orthogonal matrix is 

a square matrix with the property that    AT i A = A i AT = I  or equivalently   A
T = A! 1. The 

determinant of an orthogonal matrix is ±1 because 

    1= det AT i A = det AT ! det  A = (det  A)2.  
It turns out that an orthogonal transformation corresponds to rotation about the origin when 
det A = +1 and to reflection about a line through the origin when det A = −1 (see p. 30). It 
follows that the 

  
yi's  are normally distributed with zero mean (since they are linear functions 
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of the 
  
zi's)  and that Var(

  
yi ) =1 and Cov(

  
yi , y j ) = 0  when  i ! j  (since    A i AT = I ). These 

are necessary conditions that the 
  
yi's  are independent standard normal variates like the 

  
zi's.  

To complete the proof note that the joint distribution of the 
  
zi's  is   (2! )

" 1
2
n
e

" 1
2

zi
2#  that 

depends only on their distance from the origin; contours of equal probability density are 
circles in two, spheres in three and hyperspheres in higher dimensions. A rotation about the 
origin or a reflection from one side of a line through the origin to the same distance on the 
other side of the line leaves the probability density invariant. Thus the 

  
yi's  are independent 

standard normal variates. 

Let 
  
a1j =1/ n  for all j in the first row of the transformation matrix A, so that 

  
y1 = nz = n(x ! µ)/" , and define the remaining rows in some way that satisfies orthogo-

nality. From the formula for   S2  near the top of p. 199 it follows that 
  
S2/! 2 = yi

2
i=2

n"  so 

that   S
2/! 2  is a  !

2  variate with n − 1 degrees of freedom distributed independently of   x.  
We now need to find the distribution of 

 
  
T =

n(x ! µ)
s

=
n(x ! µ) / "

s/"
=

Z

Y/f
=

Z
X

 

where Z is a standard normal variate, Y is an independent  !
2  variate with f = n – 1 degrees of 

freedom and   X = Y/f . In the same way that the distribution of a  !
2  variate with 1 degree 

of freedom was found near the bottom of p. 192 (but without the factor 2) it can be shown 
that the probability density function of X is 

 
  
g(x) =

2 f
1
2

f
x f ! 1e

! 1
2

fx2

A( f )
 

where A(f) is defined on p. 193. Write H(t) for the cumulative probability function of T and 
h(t) for its probability density function. Then 

 

  

H(t) = Prob(Z/X ! t) = Prob(Z ! Xt) = " (xt)g(x)dx
0

#
$

h(t) =
dH(t)

dt
= %(xt)xg(x)dx= constant&(1+

t2

f0

#
$ )

' 1
2
( f +1)

 

where the constant is   A( f +1)/[ A( f ) 2! f ]. (To do the integration, make the substitution

  u = x2( f + t2).) h(t) is the density function of the t distribution with f degrees of freedom. 
The distribution is symmetrical about zero but the variance and the kurtosis (see p. 187) 
increase as f becomes smaller. When f = 4 the tails are so fat that the kurtosis becomes 
infinite and when f = 1 or 2 the variance is infinite. Tables of the percentage points of the t 
distribution are widely available. It is interesting to note that Student used  ö!  rather than s to 
define t and therefore found a slightly different formula for its density function and slightly 
different tables for its percentage points. It makes no difference to significance tests and 
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confidence intervals for the mean which estimator of the standard deviation is used as long as 
the appropriate tables of percentage points are used with it. The important point is that a 
sufficient estimator should be used in order to extract full information from the data. 

As an example Student considered data on the effect of the drug hyoscine in 
producing sleep. The amount of sleep was measured with and without the drug and the 
additional hours’ sleep gained with the drug for ten patients was: {1.9, 0.8, 1.1, 0.1, −0.1, 4.4, 
5.5, 1.6, 4.6, 3.4}. The mean gain is   x = 2.33 and the standard deviation is s = 2.00. To do a 
significance test at the 5% level of the null hypothesis that µ = 0 against the alternative 
hypothesis that µ ≠ 0 we calculate   t = 10x/s= 3.68 and look up the two-tailed 5% point t* 
of the t distribution with 9 degrees of freedom, such that Prob(|T| ≥ t*) = 0.05 which is t* = 
2.262. The null hypothesis of no effect is rejected at the 5% level since |3.68| > 2.202. The 
corresponding 1% and 0.1% points of the t distribution with 9 degrees of freedom are t** = 
3.250 and t*** = 4.781 so that the result is also significant at the 1% but not at the 0.1% 
level. These are two-tailed tests that take into account the possibility that we might want to 
test the possibility that hyoscine might decrease the amount of sleep. If we are prepared to 
ignore this possibility in advance so that we would only do a significance test when   x > 0 we 
could use the one-tailed percentage points t* = 1.833, t** = 2.821 and t*** = 4.297 (for 
example Prob(T > 1.833) = 0.05). To find a 95% confidence interval for µ we would use the 
two-tailed percentage 5% point and assert that   | 10(x ! µ)/s|< 2.262,  which has a 95% 
probability of being true and is equivalent to the assertion that µ lies in the range between 

  x ± 2.262s/ 10 , that is to say between 0.90 and 3.76 hours. 
The t test assumes that the variable is normally distributed. Non-parametric tests have 

been developed that make no assumption about the distribution of the underlying variable. In 
the above example a non-parametric test would assume only that the median of the 
distribution is 0 under the null hypothesis so that patients would be equally likely to have a 
positive or negative additional hours’ sleep with the drug. In fact only one in ten of them had 
a negative measurement. The probability, if the drug had no effect, of obtaining 1 or 0 
negative observations is (10 + 1)/1024 = 0.011 (from the binomial distribution with n = 10 
and 

 
! = 1

2
)  so that the null hypothesis can be rejected at the 5% but not quite at the 1% level 

under this one-tailed test. The two-tailed test, taking into account the probability of obtaining 
1 or 0 negative or positive observations, gives a significance level of 0.022. As might be 
expected the non-parametric test that makes no assumption about the underling distribution is 
less powerful than the corresponding t test that makes the assumption of normality. 

The  !
2  test of goodness of fit 

Suppose that n observations have been grouped into k classes with 
 
ni  observations in the ith 

class (i = 1, 2, … , k) and that the null hypothesis states that the probability of falling in the 
ith class is 

 
Pi  so that the Expected number of observations in this class is 

  
nPi .  The  !

2  
criterion of goodness of fit of the observed to the Expected numbers of observations, 
invented by Karl Pearson in 1900, is 
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! 2 =

(ni " nPi )
2

nPi
i=1

k# .  

The fact that this criterion follows the  !
2  distribution with an appropriate number of degrees 

of freedom when the null hypothesis is true can be used to construct a significance test. A 
one-tailed test is appropriate since one would only want to reject the null hypothesis when 
there are large deviations of observed from Expected numbers, in which case the criterion 
will be large. 

If the probability that an observation falls into the ith class is 
 
Pi , then it follows from 

an extension of the argument used to obtain the binomial distribution that there will be 
  
n1  in 

the first class, 
  
n2  in the second class and so on in n observations is 

 
   
P(n1,n2,! ,nk ) =

n!
n1!n2!! nk !

P1
n1P2

n2 ! Pk
nk . 

This is the multinomial distribution. The frequencies 
  
n1,n2  and so on are not independent 

random variables since they are subject to the constraint that they sum to n; when one of 
these frequencies is larger than its Expected value, then the others must on average be rather 
smaller to compensate. But they can be regarded as independent Poisson variates with means 

 
µi = nPi  subject to the constraint that they sum to n. The joint distribution of k independent 
Poisson variates with these means would be 

 
   
e! nP1

(nP1)n1

n1!
! e! nPk

(nPk)nk

nk !
= e! nn ni" P1

n1! Pk
nk

n1!! nk !
 

and the probability that they sum to n would be 

 
  

e! nnn

n!
 

since their sum would be a Poisson variate with mean n. Dividing the first expression by the 
second to find their conditional distribution gives the multinomial distribution. 

Suppose that the 
  
ni's are independent Poisson variates with mean 

 
µi = nPi  and define 

  
zi = (ni ! nPi )/ nPi . The 

  
zi's  are independent variates with zero mean and unit variance and 

can be treated approximately as independent standard normal variates provided that 
 
nPi  is 

not too small; in practice this is an adequate approximation provided that 
  
nPi > 5  for all i. 

Make an orthogonal transformation   y = A i z  such that 
  
y1 = Pii=1

k! zi  and impose the 

constraint that  ni! = n  which is equivalent to 
  
y1 = 0. Then 

 
  
! 2 =

(ni " nPi )
2

nPi
i=1

k# = yi
2

i=2

k#  
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is approximately a  !
2  variate with k − 1 degrees of freedom. 

The criterion for testing whether the white die in Table 10.1 (p. 176) is biased is 

 
  
! 2 =

(3246" 3333.3)2

3333.3
+

(3449" 3333.3)2

3333.3
+! +

(3932" 3333.3)2

3333.3
= 271.0 

because the Expected frequency of each number on the assumption that the white die is 
unbiased is 20,000/6 = 3333.3. The probability that a  !

2  variate with 5 degrees of freedom 
should be greater than 20.5 is 0.001 or 0.1% so that a value of 271.0 is almost impossible. It 
is almost certain that the white die is biased, which is obvious from inspection of the data. 
Table 10.2 (p. 178) shows the frequencies of four types of seed (yellow round, yellow 
wrinkled, green round and green wrinkled) obtained in one of Mendel’s experiments on 
garden peas. The probabilities of these types predicted by his theory are 9/16, 3/16, 3/16 and 
1/16. The  !

2  criterion for testing this hypothesis is 

 
! 2 =

(315" 312.75)2

312.75
+

(101" 104.25)2

104.25
+

(108" 104.25)2

104.25
+

(32" 34.75)2

34.75
= 0.47. 

The probability that a  !
2  variate with 3 degrees of freedom should be greater than 0.47 is 

0.82 or 82% so that there is no reason to reject the Mendelian hypothesis. 
In these examples the probabilities are specified completely under the null hypothesis. 

In many situations the probabilities contain one or more parameters that must be estimated 
from the data. It can be shown in this case that the  !

2  criterion is a  !
2  variate with k − 1 − p 

degrees of freedom where p is the number of parameters estimated from the data, provided 
that they have been efficiently estimated. Table 10.5 (p. 184) shows observed and Expected 
frequencies assuming a Poisson distribution. The goodness of fit criterion, after grouping the 
class 11 and above to ensure that the Expected frequency in this tail exceeds 5, is 

 
  
! 2 =

(37" 54)2

54
+

(203" 210)2

210
+! +

(10" 11)2

11
+

(6" 7)2

7
=18.2.

 
Twelve classes have been used in this calculation after the grouping so that this criterion 
should have a  !

2  distribution with 10 degrees of freedom since one parameter has been 
estimated from the data. The upper 5% point is 18.3 so that the observed value of 18.2 is 
almost but note quite significant at this level. 

In Table 10.1 (p. 176) it is obvious that both dice are biased so that probabilities of 
the numbers on the individual dice must be estimated from the relative frequencies but it is of 
interest to test whether the two dice are behaving independently. In this case the Expected 
frequency of 5 on the white and 3 on the red die can be estimated as 20,000 × 0.182 × 0.159 
= 579 compared with the observed frequency of 587. The criterion of goodness of fit 
calculated from the 36 frequencies is  !

2 =18.8. For each die only 5 relative frequencies 
have been independently calculated from the data because the sixth can be found from the 
constraint that they sum to unity. The number of degrees of freedom is 36 − 1 − 5 − 5 = 25. 
The upper 5% point of the  !

2  distribution with 25 degrees of freedom is 37.7 so that there is 
no evidence of departure from independence. 
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Regression 

The linear regression model was described on pp. 94−96 in the context of the use of matrices. 
In this model it is assumed that a variable y depends linearly on a number of independent 
variables 

   
x1,! ,xp  and is also subject to random variability about the regression line. If n 

observations have been made on the variables the model may be written 
 

   
yi = ! 1xi1 +! + ! pxip + ei   

   (i =1,! ,n)  where 
 
ei  is a random error. The model may be written in matrix terminology 

   y = X i ! + e  

where y is the vector of observations of length n, X is the n × p matrix of known coefficients 

 

    

X =

x11   x12   !    x1p

x21   x22   !    x2p

 "       "      "     "

xn1   xn2   !    xnp

!

"

#
#
#
#
#

$

%

&
&
&
&
&

,   

β  is the vector of unknown parameters of length p and e is the vector of unknown random 
errors of length n. The independent variables may be values fixed by the experimenter (for 
example log dose in Fig. 6.1 on p. 96) or they may be observed values of a random variable 
(for example mid-parental height in Fig. 10.3 on p. 192). 

We now assume that the random errors 
 
ei  are normally and independently distributed 

with the same variance  !
2.  (It was shown on pp. 191−192 that this is true for the regression 

of one random variable on the other if they have jointly have a bivariate normal distribution; 
this result can be extended to the regression of one random variable on several others if they 
jointly have a multivariate normal distribution.) The logarithm of the likelihood is 

 
    
logL = ! 1

2
nlog2" # 2 !

1
2
(y ! X i $) i (y ! X i $)

# 2
= ! 1

2
nlog2" # 2 !

1
2

S($)

# 2
.  

Hence the method of maximum likelihood leads to estimating the parameters by minimizing 
  S(! ),  the residual sum of squares about the regression line, that is to say by the method of 

least squares (see pp. 94−96). This leads to the estimates    
ö! = A" 1 i c,  where    A = XT i X  and 

   c = y i X,  and   ö!
2 = S( ö" )/n.  

Consider the simple regression of a dependent variable y on a single independent 
variable x that may be expressed with a slight change of notation as 

 
  
yi = ! 1 + ! 2xi + ei  

   (i =1,! ,n) . The matrix X has n rows and 2 columns with 1 down the first and 
 
xi  down the 

second column. Hence 
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A = XT i X =
  n       xii!    

xii!   xi
2

i!

"

#

$
$

%

&

'
'

c = y i X = yii! , xi yii!{ } .

 

The inverse of A is 

 

   

A ! 1 =

 xi
2

i"    ! xii"
! xii"           n

#

$

%
%

&

'

(
(

n xi
2 ! xii"( )2

i"
. 

From the formula    
ö! = A" 1 i c  it follows after a little algebra that 

 

  

ö! 2 =
xi yi " nx y

i#
xi

2 " nx2
i#

=
(xi " x)( yi " y)

i#
(xi " x)2

i#
ö! 1 = y " ö! 2x.

 

The residual sum of squares about the fitted regression line is 

 

  

S( ö! ) = ( yii" # ö! 1 # ö! 2xi )
2 = [(

i" yi # y) # ö! 2(xi # x)]2

= ( yii" # y)2 # ö! 2
2 (xi # x)2

i" .
  

The second term in the last expression represents the contribution to the variability of the y’s 
that has been removed by fitting the regression line. 

The sampling distribution of these estimates must be determined in order to make 
inferences about them. The values of the independent variable x will be regarded as fixed so 
that only the random variability of the y’s need be considered. When x and y are random 
variables with a joint probability distribution the inferences are made conditional on the 
observed values of the x’s. 

The estimates of the slope and intercept are linear in the y’s so that they will be 
normally distributed if the random errors are normal. To find the sampling distribution of the 
slope  

ö! 2  note that 

 

  

(xii! " x)( yi " y) = (xii! " x)yi = (xii! " x)(#1 + #2xi + ei )

= #2 (xi " x)2
i! + e

i! i
(xi " x)

 

(using the fact that 
  

(xii! " x) = 0). Hence  

 

  

E( ö! 2) = ! 2

Var( ö! 2) =
" 2

(xi # x)2
i$

.
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Note also that 

 
  
y = yii! /n = " 1 + " 2x + eii! /n 

so that 

 

  

E( y) = ! 1 + ! 2x

Var( y) =" 2/n

Cov( y, ö! 2) = E
eii#

n
$

ei (xi %x)
i#
(xi %x)2

i#

&

'

(
(

)

*

+
+

= 0

  

   

since 
  

(xii! " x) = 0. It follows that 

 

  

E( ö! 1) = ! 1

Var( ö! 1) =
1
n

+
x2

(xi " x)2
i#

$

%

&
&

'

(

)
)
* 2

Cov( ö! 1, ö! 2) =
" x

(xi " x)2
i#

* 2.

  

It remains to find the distribution of the residual sum of squares about the fitted 
regression line, 

  
S( ö! ) = ( yii" # ö! 1 # ö! 2xi )

2. Note that 

  
ei = ( yi ! " 1 ! " 2xi ) = ( yi ! ö" 1 ! ö" 2xi ) + ( y ! " 1 ! " 2x) + ( ö" ! " )(xi ! x).   

Squaring and summing over the observations we find that 

 
  
S(! ) " ei

2
i# = S( ö! ) + n( y $ ! 1 $ ! 2x)2 + ( ö! 2 $ ! 2)2 (xii# $ x)2.  

After division by  !
2  the left hand side is a  !

2  variate with n degrees of freedom while the 

second and third terms on the right hand side are independent  !
2  variates with 1 degree of 

freedom. (They are independent because   y and ö! 2  are uncorrelated.) It follows from the 

argument at the bottom of p. 200 and the top of p. 201 that   S( ö! )/" 2  is a  !
2  variate with 

n − 2 degrees of freedom distributed independently of the estimated slope and intercept. 
Consider the data in Table 10.7 on p. 191 on the height in inches of 928 adult children 

(y) and their mid-parents (x). The relevant statistics for calculating the regression of y on x 
are shown below: 

  

             n = 928                                 x = 68.3028                              y = 68.0933

(xii! " x)2 = 3044.93       (xii! " x)( yi " y) =1965.48        ( yii! " y)2 = 5992.42.
 

A class like 68 in Table 10.7 contains all individuals with a height greater than or equal to 68 
inches and less than 69 inches. Galton found that this class had an average value of 68.5 
inches for the mid-parents but only 68.2 inches for the children because of the tendency to 
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record height to the nearest integer. The 15 observations in the class {67, 65} are all taken to 
be at {67.5, 65.2}, and likewise for other classes, in these statistics. The variance of the mid-
parents can be estimated as 3044.93/927 = 3.285 square inches and that of their adult 
children as 5992.42/927 = 6.464; the former is about half the latter as would be expected 
since Galton found no evidence of assortative mating. The estimated slope of the regression 
line is  

ö! 2 =1965.48/3044.93= 0.6455 and the intercept is  
ö! 1 = 68.0933" 68.3028ö! 2  = 24.0. 

The residual sum of squares about the regression line is   S( ö! ) = 5992.42" 3044.93ö! 2
2 = 4724 

so that the unbiased estimator of the variance about the line is   s
2 = S( ö! )/926= 5.101. The 

most interesting parameter is the slope of the line that measures the heritability of human 
height. The sampling variance of  

ö! 2  can be estimated as 5.101/3044.93 whose square root 
(called the standard error) is 0.04093. The two-tailed 5% point of the t distribution with 926 
degrees of freedom is t* = 1.9625 so that a 95% confidence interval for 

 
! 2  is 

0.6455 ±  1.9625 × 0.04093 = 0.5652 to 0.7258. As might be expected in such a large sample 
there is little difference from using the two-tailed 5% point of the standard normal 
distribution, z* = 1.9600. 

Analysis of variance 

The analysis of variance is a set of statistical procedures developed by R.A.Fisher in the 
1920s for partitioning the variance between groups of observations. It can be considered as a 
special type of regression model. In its simplest form it provides a significance test whether 
the means of several groups are equal and thereby generalizes the t test to more than two 
groups. Consider the data in Table 11.1 on the comb growth of 5 groups of 5 capons, each 
group receiving a different dose of androsterone. (The linear regression of the mean of each 
group on the logarithm of the dose was described on p. 96.) 
 
Table 11.1. Comb growth in capons receiving different doses of androsterone. 
 

Dose (mg androsterone) 
 
1
2

 1 2 4 8 

 
Log2 dose  (x) −1 0 1 2 3 

 
 8 5 13 17 17 
 1 6 7 14 17 
Comb growth (mm) (y) 1 9 12 14 20 
 3 7 10 19 18 
 1 4 11 13 15 
 
Mean comb growth 2.8 6.2 10.6 15.4 17.4 
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An analysis of variance of these data is shown in Table 11.2. Write 
 
xi  for the ith 

 
log2  dose level and 

 
yij  for the jth observation on it; also write 

  
yii  for the average 

observation on the ith dose level and 
  
y

i i
 for the overall average of the 25 observations. The 

sums of squares (SS) in the first half of the table are calculated as follows: 

    SST = Total SS = 
   

( yiji , j! " y
i i
)2   

  SSW = Within doses SS = 
   

( yijj!i! " yii )
2  

           SSB = Between doses SS = 
   
5 ( yiii! " y

i i
)2.  

SST is the sum of the squared deviations from the overall average. If the errors are normally 
distributed with variance  !

2  and the null hypothesis that the hormone has no effect on comb 
growth is true,  SST/! 2  is a  !

2  variate with 24 degrees of freedom (df). SSW is the sum of 

the squared deviations from the dose averages and  SSW/! 2  is a  !
2  variate with 20 df 

whether or not the null hypothesis is true. SSB is the sum of the squared deviations of the 
dose averages from the overall average multiplied by 5, the number of observations at each 
dose level;  SSB/! 2  is a  !

2  variate with 4 df since    Var( yii ) = ! 2/5.  It is an algebraic 
identity that SSW + SSB = SST. The mean squares (MS) are defined as MS = SS/df so that 
E(MSW) =  !

2  whether or not the null hypothesis is true whereas E(MSB) =  !
2  if the null 

hypothesis is true but will be inflated otherwise. The ratio F = MSB/MSW (named F after 
Fisher) can be used as a criterion to test the null hypothesis. When the null hypothesis is true 
one would expect that   F ! 1 but when it is false one would expect that F > 1. If 

  
Y1 and Y2  are 

independent  !
2  variates with 

  
f1 and f2  degrees of freedom, the random variable 

  

Y1/f1
Y2/f2

 

follows the F distribution. Its density function can be found by the method used for finding 
the distribution of the t distribution on p. 201. Its percentage points are extensively tabulated. 
The upper 0.1% point of the F distribution with 4 and 20 df, suitable for a one-tailed test, is 
7.1 so that the observed value for F between doses in Table 11.2 is very highly significant. 

 
Table 11.2. Analysis of variance on comb growth data. 
 
 SS df MS F 
 
Between doses 747.04 4 186.76 33.59*** 
Within doses 111.20 20 5.56 
Total 858.24 24  
 
Linear regression 737.28 1 737.28 132.60*** 
Departures from linearity 9.76 3 3.25 0.58 
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It is probably obvious from inspection that there are large differences between dose 
levels in Table 11.1. Of more interest is the partition of the between doses SS, shown in the 
lower part of Table 11.2, into a component with 1 df for the sum of squares removed by 
fitting a linear regression on 

  
x = log2 dose and a residual component with 3 df representing 

possible departures from linearity. The sum of squares for linear regression was calculated as 

 
  
SSL = 5! ö" 2

2 ! (xii# $ x)2 = 5! 3.842 ! 10= 737.28  

from the result near the middle of p. 206. The sums of squares were divided by their degrees 
of freedom to give mean squares that were then divided by MSW = 5.56 to give F values. 
The linear regression is very highly significant, as expected, but there is no evidence of 
departures from linearity over the range of doses tested. Care must be taken in extrapolating 
the latter result beyond that range. Capons receiving zero dose would not have comb growth 
of negative infinity nor would the combs of capons receiving increasingly high doses become 
infinitely large. 
 
 


